Einfach mal den Schalter umlegen
21.12.2021Cardioviren besitzen ein Protein, das Infektionen verstärken oder hemmen kann, wie eine aktuelle Studie aus Würzburg und Cambridge zeigt. Damit eignet es sich möglicherweise als Ziel neuer Therapien.
Infektionen mit dem Enzephalomyokarditis-Virus (EMCV) betreffen unter anderem verschiedene Säugetiere wie etwa Schweine und Schimpansen. Doch auch der Mensch kann sich infizieren; Fieber und entzündliche Erkrankungen, etwa des Gehirns, sind die Folge. Wie andere Cardioviren – oder wie auch das hochinfektiöse Coronavirus SARS-CoV-2 – ist EMCV ein RNA-Virus: Sein Erbgut besteht aus Ribonukleinsäuren (RNA).
Da Viren keinen eigenen Stoffwechsel haben und nicht selbst Proteine erzeugen können, um sich zu vermehren, infizieren sie einen Wirt und dringen in dessen Zellen ein. Dort manipulieren sie den Translationsprozess, mit dessen Hilfe aus einer Boten-RNA (mRNA) Proteine gebildet werden, um ihre eigenen Proteine herzustellen: Sie übernehmen die Kontrolle über die Ribosomen – die Fabriken der Proteinsynthese.
Vermehrung mit einem Trick
Die Manipulation dieser zellulären Fabriken gelingt durch die ribosomale Leserasterverschiebung: Beim Ablesen und Übersetzen der genetischen Informationen in der Boten-RNA – einem streng kontrollierten Vorgang in einer bestimmten Reihenfolge, der innerhalb einer Ribosom genannten Zellstruktur stattfindet – wird eine Verschiebung des Leserasters hin zu einer anderen Stelle erzwungen. Dies ändert die Art, wie die gesamte Sequenz decodiert wird, und ermöglicht es, mehr als ein Protein aus einer einzigen Boten-RNA zu synthetisieren.
„Indem sie den Translationsmotor des Wirts kapern und das System korrumpieren, um ihre eigenen Proteine zu produzieren, haben sich Viren als furchterregende zelluläre Eindringlinge erwiesen“, sagt Neva Caliskan, Forschungsgruppenleiterin am Würzburger Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI) und korrespondierende Autorin einer jetzt in der Fachzeitschrift Nature Communications veröffentlichten Studie.
Kristallstruktur gelöst
„In unserer aktuellen Arbeit haben wir uns darauf konzentriert zu untersuchen, wie dieser Prozess bei der EMCV-Replikation reguliert wird. Dem multifunktionalen 2A-Protein kommt dabei eine Schlüsselrolle zu“, ergänzt Ian Brierley, Gruppenleiter an der Pathologie der Universität Cambridge und neben Caliskan Mitinitiator der Untersuchungen.
Das Forschungsteam an der Universität Cambridge hat die Kristallstruktur von 2A gelöst und dabei eine neue Proteinfaltung und deren Zusammenwirken mit den Ribosomen entdeckt. Chris Hill, einer der Erstautoren der Studie und inzwischen Gruppenleiter an der Universität York, erklärt: „Die Faltung ist ganz besonders und ähnelt keinem anderen bekannten Muster. Das lässt uns die jahrelangen Arbeiten darüber besser verstehen, wie das multifunktionale 2A-Protein mit seinen Zielen interagieren kann.“
Die Gruppe konnte außerdem zeigen, wie die Proteinfaltung dazu beiträgt, dass das EMC-Virus an die RNA des Wirtsribosoms bindet. „Das Andocken des 2A-Proteins an die RNA stabilisiert deren Struktur und erzwingt eine Rasterverschiebung“, sagt Lukáš Pekárek, der ebenfalls zum Erstautorenteam der wissenschaftlichen Studie zählt. „Diesen Effekt konnten wir, hochaufgelöst durch unsere optischen Pinzetten, genau beobachten“, so der HIRI-Doktorand im Caliskan-Labor.
Eine virale Achillesverse
„Zu Beginn einer EMCV-Infektion ist das 2A-Protein noch nicht vorhanden, stattdessen sind andere Proteine aktiv, die das Virus zur Replikation seines Genoms benötigt“, sagt HIRI-Doktorandin Anuja Kibe, die ebenfalls an der Studie mitgewirkt hat. Bei Fortschreiten der Infektion trete 2A dann gehäuft auf und stimuliere die Rasterverschiebung, die der Erreger braucht, um Proteine für die Produktion der Virusstruktur herzustellen.
„Die Bindefähigkeit von 2A und ihr stabilisierender Effekt auf die Wirts-RNA haben zur Folge, dass die Translationsmaschinerie gestoppt wird“, erklärt Pekárek. „Dieses besondere Protein wirkt also regelrecht wie ein Schalter, durch den die weitere Virusvermehrung gehemmt werden kann.“
Die weiterführende Forschung kann an dieser viralen Achillesferse ansetzen, um darauf zielende RNA-Technologien und -Therapeutika zu entwickeln und in die medizinische Anwendung zu bringen.
Über Cardioviren
Cardioviren gehören zu den kleinsten Viren, die es auf der Welt gibt. Ihr Durchmesser beträgt etwa 22 bis 30 Nanometer. Das ist etwa tausendmal kleiner als der Durchmesser eines Haares – und damit viel zu klein, um Viren dieser Größe unter einem Mikroskop sichtbar zu machen. RNAs, also Ribonukleinsäuren, aus denen das Genom dieser Viren besteht, sind nochmals kleiner. Wissenschaftlerinnen und Wissenschaftler am HIRI arbeiten deswegen unter anderem mit optischen Pinzetten. Diese ermöglichen es, molekulare Strukturen und RNA-Funktionen in atomarer Auflösung zu untersuchen.
Über das HIRI
Das Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI) ist die erste Einrichtung weltweit, die die Forschung an Ribonukleinsäuren (RNA) mit der Infektionsbiologie vereint. Auf Basis neuer Erkenntnisseaus seinem starken Grundlagenforschungsprogramm will das Institut innovative therapeutische Ansätze entwickeln, um menschliche Infektionen besser diagnostizieren und behandeln zu können.
Das HIRI ist ein Joint Venture des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig und der Julius-Maximilians-Universität Würzburg (JMU) und befindet sich auf dem Würzburger Medizin-Campus.
Publikation
Hill C H, Pekárek L, Napthine S, Kibe A, Firth A E, Graham S C, Caliskan N, Brierley I. Structural and molecular basis for Cardiovirus 2A protein as a viral gene expression switch. Nature Communications, 9. Dezember 2021. DOI: 10.1038/s41467-021-27400-7.