Neue Nanowelt in Zellen entdeckt
22.03.2022Wie eine Zelle Hunderte Signale gleichzeitig verarbeiten kann, zeigt ein Forschungsteam um Martin Lohse im Fachblatt „Cell“. Die Ergebnisse werden der Zellbiologie ein neues Forschungsfeld eröffnen.
Eine lebende Zelle ist vielfältigen Reizen ausgesetzt. Unzählige Botenstoffe docken an ihrer Oberfläche an, übermitteln ihre Botschaften und lösen Signale im Zellinneren aus. Daraufhin ändert die Zelle ihre Funktionen, ihren Stoffwechsel oder schaltet Gene im Zellkern ein- oder aus.
Es sind viele unterschiedliche Rezeptoren in der Zellmembran, welche die Botschaften der Außenwelt annehmen. Wie aber schafft es die Zelle, zwischen den Signalen verschiedener Rezeptoren zu unterscheiden? Hierbei spielen bislang unbekannte Nanodomänen eine entscheidende Rolle. Das zeigt ein Team um den Pharmakologen Martin Lohse mit Forschenden aus der Universität Würzburg, dem Max-Delbrück-Centrum in Berlin und dem ISAR Bioscience Institut in Planegg bei München.
Wenige Moleküle reagieren auf zahlreiche Signale
Mehr als 800 unterschiedliche Rezeptoren gibt es, die auf der Zelloberfläche sitzen. Eine einzelne Zelle kann bis zu hundert verschiedene Rezeptor-Typen haben, und diese sprechen wiederum auf ganz unterschiedliche Botenstoffe an.
„Von außen kommen zahllose Signale, die ganz spezifisch von Rezeptoren erkannt werden – aber in der Zelle gibt es nur eine Handvoll Moleküle, die auf die Aktivierung reagieren. Dennoch erledigen sie vielfältige und völlig unterschiedliche Aufgaben“, sagt Andreas Bock. Der langjährige Mitarbeiter von Martin Lohse ist seit Anfang 2022 Professor an der Universität Leipzig und Letztautor der Studie, die in der renommierten Fachzeitschrift Cell veröffentlicht ist.
Kommunikation in nanometergroßen Räumen
Cyclisches Adenosinmonophosphat (cAMP) ist das wichtigste Signalmolekül in der Zelle. Es wird hergestellt, wenn bestimmte Rezeptoren stimuliert werden. Ein Beispiel: Regt man Herzmuskelzellen mit Adrenalin an, dann erhöht sich ihr cAMP-Spiegel und das Herz kontrahiert schneller und kräftiger. Werden die gleichen Zellen mit Prostaglandin stimuliert, entsteht zwar die gleiche Menge cAMP, doch der Herzmuskel reagiert erstaunlicherweise kaum.
Mit Fluoreszenzmikroskopie untersuchten die Forschenden an isolierten Einzelzellen, wie die cAMP-Signale von zwei verschiedenen Rezeptoren parallel in einer Zelle entstehen und verarbeitet werden.
Sie erkannten, dass sich unter Normalbedingungen die Erhöhung des cAMP-Spiegels auf winzig kleine Domänen direkt am aktivierten Rezeptor mit einem Radius zwischen 30 und 60 Nanometern beschränkt. „Das sind abgeschottete Räume, in denen die cAMP-Konzentration sehr hoch ist – in ihnen entstehen die unterschiedlichen Wirkungen des cAMP“, erläutert Andreas Bock „Wir vermuten, dass über die enge Lokalisation der Nanoräume die hohe Spezifität von Rezeptor-Stimuli entsteht. Wir haben diese kleinen Räume RAINs genannt: Rezeptor-assoziierte unabhängige Nanodomänen.“
Signale bleiben erst einmal im Umfeld des Rezeptors
„Die Entdeckung der Nanodomänen erhöht die Komplexität von Signalwegen in der Zelle um ein Vielfaches gegenüber unseren bisherigen Vorstellungen“, sagt Dr. Charlotte Kayser. Gemeinsam mit Dr. Selma Anton ist sie Erstautorin der Studie. Signale, die am Rezeptor entstehen, bleiben erst einmal vor Ort und beeinflussen nur die Enzyme in unmittelbarer Umgebung. Andere Bereiche in der Zelle werden durch die Signale also nicht angesprochen. Dadurch können einzelne Signalwege sehr lokal ein- und ausgeschaltet werden.
Lange betrachtete die Wissenschaft das Cytosol, das Innere der Zelle, als ein großes „Schwimmbecken“, in dem sich Zellbestandteile frei tummeln. Doch es scheint bislang unbekannte Strukturen zu geben, die das Zellinnere um jeden einzelnen Rezeptor herum gliedern. „Wir können die Nanoräume nicht direkt sehen – selbst für die besten Lichtmikroskope sind sie zu klein“, erläutert Seniorautor Martin Lohse, Professor in der Pharmakologie der Universität Würzburg und Chairman des ISAR Bioscience Instituts in Planegg bei München.
Zellen können viele Signale parallel verarbeiten
Die Zelle scheint demnach kein Schalter zu sein, der entweder „An“ oder „Aus“ ist. Sie funktioniere eher wie ein Chip, bei dem auf kleinster Fläche viele Signale gleichzeitig verarbeitet werden, sagt Lohse. „Das ist zum Beispiel sehr wichtig für Nervenzellen, die auf diese Weise an ihren Ausläufern jeweils unterschiedliche Signale verarbeiten können: Eine Stelle kann aktiviert sein, während eine weitere ruht und eine dritte gehemmt wird.“
Sobald die Forschenden eine Zelle mit geringen Mengen von Botenstoff – Hormon oder Neurotransmitter – stimulierten, waren die Nanodomänen stark ausgeprägt. Bei stärkerer Stimulation kam es zum „Überlaufen“ der Signalmoleküle und die Räume begannen zu verschmelzen.
Das könnte sich medizinisch nutzen lassen. „Womöglich kann man mit Substanzen, die in unterschiedlichem Maße Rezeptoren stimulieren – ich denke zum Beispiel an Opioide – nicht nur quantitativ, sondern auch qualitativ unterschiedliche Effekte erzeugen. Je nachdem, ob die ausgelösten cAMP-Signale nur einzelne Regionen der Zelle betreffen oder die ganze Zelle erfassen“, so Martin Lohse.
Quantenwelt für zelluläre Signale gefunden
„Wir haben einen ersten Blick auf eine bisher ungeahnte Nanowelt innerhalb von Zellen getan“, sagt der Professor. „Mit Forschungsmitteln des European Research Council haben wir seit 2008 nach einer ‚Quantenwelt‘ für zelluläre Signale gesucht. Jetzt können wir sagen, dass es sie wirklich gibt.“
Zunächst gelte es, den Aufbau und die Bestandteile solcher Nanodomänen besser zu verstehen. Erste Befunde zeigen bereits, dass die Domänen bei kranken Zellen, etwa in Leberkrebszellen oder im kranken Herzen, nicht mehr richtig funktionieren. Damit werde die zelluläre Nanowelt auch für die Medizin interessant.
Publikation
Anton SE, Kayser C, Maiellaro I, Nemec K, Möller J, Koschinski A, Zaccolo M, Annibale P, Falcke M, Lohse MJ, Bock A (2022) Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell, DOI: https://doi.org/10.1016/j.cell.2022.02.011