Rund um die Uhr aktiv und trotzdem gesund
20.06.2017Innere Uhren steuern den Tag-Nacht-Rhythmus vieler Lebewesen. Was aber machen die Taktgeber bei Tieren, deren Aktivitäten nicht diesem Muster folgen? Das haben Wissenschaftler der Uni Würzburg jetzt untersucht.
Sammelbienen haben einen anstrengenden Job: Auf der Suche nach Nektar, Honigtau und Pollen sind sie ständig zwischen Bienenstock und Blütenwiese unterwegs. Eine innere Uhr sagt ihnen unter anderem, wann die passende Zeit dafür ist, weil Blüten sich öffnen, beziehungsweise wann es Zeit ist sich auszuruhen, weil die potenziellen Nahrungsquellen „geschlossen“ sind.
Die innere Uhr hilft auch bei der Weitergabe von Informationen über gute Sammelstellen an andere Bienen. Weil sich die Tiere auf ihrem Weg am Sonnenstand orientieren, kommt die Uhr beim Berechnen der Flugstrecke zu einem späteren Zeitpunkt zum Einsatz.
Einen anstrengenden Job erledigen auch Ammenbienen. Nicht, weil sie viel unterwegs sein müssten – im Gegenteil. Aufgabe der jungen Honigbienen ist es, ältere Larven mit einem Brei aus Pollen und Honig zu füttern – und das rund um die Uhr. Einem 24-Stunden-Rhythmus mit abwechselnden Ruhe- und Aktivitätsmustern folgen sie dabei nicht.
Publikation in Open Biology
Wie die inneren Uhren von Sammel- und Ammenbienen arbeiten, auf welche molekularen Mechanismen die Unterschiede im Verhalten zurückzuführen sind und wie das Uhren-Netzwerk der Biene aufgebaut ist: Das hat ein internationales Team von Wissenschaftlern aus Israel, Deutschland und Neuseeland untersucht.
Daran beteiligt waren die Experten für das Timing bei Insekten rund um die Professorin Charlotte Helfrich-Förster, Inhaberin des Lehrstuhls für Neurobiologie und Genetik am Biozentrum der Uni Würzburg. Die Ergebnisse ihrer Arbeit haben die Forscher jetzt in der Fachzeitschrift Open Biology veröffentlicht.
Störungen der inneren Uhr machen krank
„Innere Uhren, die den täglichen Rhythmus steuern, sind in Tieren allgegenwärtig. Sie ermöglichen es ihnen, sich auf die Veränderungen der Umwelt vorab einzustellen, diese also zu antizipieren“, sagt Charlotte Helfrich-Förster. Wie wichtig gut funktionierende Uhren sind, zeigt sich dann, wenn sie – genetisch bedingt oder aufgrund von Umwelteinflüssen – gestört sind. „Dann steigt das Risiko für zahlreichen Krankheiten, wie etwa Krebs, Stoffwechselstörungen, psychischen Störungen, Herzinfarkte und Unfruchtbarkeit“, sagt die Neurobiologin.
Dennoch gibt es eine Reihe von Lebewesen, die eine Rund-um-die-Uhr-Aktivität zeigen ohne offensichtliche Krankheitserscheinungen – beispielsweise arktische Säuger, Tiefseefische oder soziale Insekten wie Honigbienen. Die Mechanismen, die diese erstaunliche natürliche Anpassungsfähigkeit ermöglichen, waren bisher weitgehend unbekannt. Einige Details konnte das Forscher-Team jetzt entschlüsseln.
Genauer Blick auf die Genaktivität
„Wir haben einen neuen spezifischen Antikörper gegen das Uhrenprotein PERIOD der Honigbiene Apis mellifera erzeugt und validiert, um das circadiane Netzwerk im Bienengehirn zu bestimmen“, beschreibt Charlotte Helfrich-Förster die Vorgehensweise der Wissenschaftler. Der Antikörper zeigt die räumliche Verteilung des Uhrennetzwerks an; seine Konzentration ermöglicht Rückschlüsse auf die Aktivität der verantwortlichen Uhren-Gene.
Ein Ergebnis dabei: Es fanden sich bei der Honigbiene eine ganze Reihe von Übereinstimmungen mit der Taufliege Drosophila melanogaster und mit anderen Insekten. „Dies lässt den Schluss zu, dass es gemeinsame anatomische Organisationsprinzipien der Insekten-Uhren gibt, die so bisher noch nicht vermutet worden waren“, sagt Helfrich-Förster.
In einem nächsten Schritt haben die Forscher die Konzentration des PERIOD Proteins im Gehirn der Bienen über 24 Stunden hinweg gemessen und so das zeitliche Aktivitätsmuster der inneren Uhren bestimmt. Wie zu erwarten war, zeigten sich bei Sammelbienen, die einem Tag-Nacht-Rhythmus folgen, starke rhythmische Änderungen über den Tag hinweg. Unerwarteter Weise hatten allerdings die Ammenbienen, die rund um die Uhr aktiv sind, den gleichen Rhythmus in der Proteinkonzentration wie die Sammelbienen. Das zeigt, dass auch bei ihnen die innere Uhr tickt. Dies war insofern so erstaunlich, da vorherige Versuche der israelischen Gruppe gezeigt hatten, dass dieser Rhythmus auf der Ebene der Gene fehlte.
„Wenn Tiere tageszeitabhängige Verhaltensmuster zeigen, geht dies meistens auch mit Veränderungen in der Expression der Uhren-Gene einher“, sagt Charlotte Helfrich-Förster. Dementsprechend müsste die Konzentration von Boten-RNA dieser Gene variieren. Dem war aber nicht so: „Die Messungen der israelischen Gruppe hatten keinerlei oder deutlich abgeschwächte Schwankungen der Konzentration der Boten-RNA dieser Gene bei Ammenbienen gezeigt. Deswegen waren wir davon ausgegangen, dass ihre Uhr stillsteht“, so die Wissenschaftlerin.
Nun kam heraus, dass dies nicht stimmt. Die innere Uhr von Ammenbienen läuft auf Ebene der Proteine und wird hervorragend durch äußere Reize mit dem Wechsel von Tag und Nacht synchronisiert.
Ohne funktionierende Uhren geht es nicht
Dieses Ergebnis passt sehr gut zu anderen Beobachtungen bei der Honigbiene. So bekommen arrhythmische Ammenbienen, die von ihrem Volk isoliert werden, sehr schnell einen circadianen Verhaltensrhythmus. Dies ist wahrscheinlich nur deshalb möglich, weil sowieso schon mehr als 160 potenzielle Schrittmacher im Ammenhirn in einem 24-Stunden-Rhythmus oszillieren (bei Sammelbienen sind es mehr als 540), was für einen circadianen Einfluss auf viele Prozesse in ihrem Gehirn spricht.
„Diese Befunde bei Ammenbienen zeigen, dass die Aktivitätsmuster der Tiere vom circadianen Netzwerk abgekoppelt sein können“, erklärt Charlotte Helfrich-Förster das zentrale Ergebnis der Studie. Gleichzeitig unterstützten sie die Hypothese, dass eine funktionierende circadiane Uhr notwendig ist – sogar bei Tieren, die in einer konstanten Umgebung rund um die Uhr aktiv sind.
Neuronal circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees and in arrhythmic nurses. T. Fuchikawa, K. Beer, C. Linke-Winnebeck, R. Ben-David, A. Kotowoy, V. W. K. Tsang, G. R. Warman, E. C. Winnebeck, C. Helfrich-Förster and G. Bloch. Open Biology. http://dx.doi.org/10.1098/rsob.170047
Kontakt
Prof. Dr. Charlotte Helfrich-Förster, Lehrstuhl für Neurobiologie und Genetik, T: (0931) 31-88823, E-Mail: charlotte.foerster@biozentrum.uni-wuerzburg.de