Intern
  • Eine Studentin fährt auf ihrem Roller zur Uni.
  • none
  • none

Wirkmechanismus von potenziellem Corona-Medikament entschlüsselt

16.08.2021

Forschungsteams aus Würzburg und Göttingen haben den Wirkmechanismus des Medikaments Molnupiravir enschlüsselt und zeigen, warum es eine hohe Wirksamkeit gegen SARS-CoV-2 verspricht.

Der antivirale Wirkstoffkandidat Molnupiravir (gelb) wird in die virale RNA eingebaut und führt dort zu Mutationen (violett), welche letztendlich die Vermehrung des Viruses verhindern.
Der antivirale Wirkstoffkandidat Molnupiravir (gelb) wird in die virale RNA eingebaut und führt dort zu Mutationen (violett), welche letztendlich die Vermehrung des Viruses verhindern. (Bild: Florian Kabinger, Christian Dienemann, Patrick Cramer / Max-Planck-Institut für biophysikalische Chemie)

Die USA sicherten sich kürzlich 1,7 Millionen Dosen eines Wirkstoffs, der Covid-19-Patientinnen und Patienten helfen könnte. Molnupiravir bremste in vorläufigen Studien das Coronavirus SARS-Cov-2 bei seiner Vermehrung aus. Forschende am Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie und der Julius-Maximilians-Universität (JMU) Würzburg haben jetzt den zugrundeliegenden molekularen Mechanismus aufgeklärt. Wie sie zeigen konnten, schleust der Wirkstoff RNA-ähnliche Bausteine in das Erbgut des Virus ein. Wird das Erbgut weiter vermehrt, entstehen fehlerhafte RNA-Kopien. Der Erreger kann sich dann nicht mehr ausbreiten. Molnupiravir wird derzeit in der Klinik erprobt.

Suche nach einem Corona-Medikament

Seit Beginn der Corona-Pandemie werden zahlreiche wissenschaftliche Projekte weltweit vorangetrieben, die untersuchen, wie sich das neue Virus bekämpfen lässt. Forschende entwickeln auf Hochtouren diverse Impfstoffe und Medikamente – mit unterschiedlichem Erfolg. Letztes Jahr gewann der antivirale Wirkstoff Remdesivir an Aufmerksamkeit, als er als erstes COVID-19-Medikament zugelassen wurde. Studien, darunter Arbeiten von Patrick Cramer am MPI für biophysikalische Chemie und Claudia Höbartner von der JMU, zeigten jedoch, warum das antivirale Mittel bei Covid-19 eher schwach wirkt.

Auch Molnupiravir ist ein antiviraler Wirkstoffkandidat, der ursprünglich als Grippemedikament entwickelt wurde. Basierend auf vorläufigen klinischen Studien verspricht die Substanz eine hohe Wirksamkeit gegen SARS-CoV-2. „Zu wissen, dass ein neues Medikament anschlägt, ist wichtig und gut. Allerdings ist es genauso wichtig zu verstehen, wie Molnupiravir auf molekularer Ebene wirkt, auch um Einsichten für die weitere Entwicklung antiviraler Substanzen zu erhalten“, erklärt Max-Planck-Direktor Cramer. „Nach unseren Ergebnissen wirkt Molnupiravir in zwei Phasen.“

Mutationen im Erbgut stoppen das Virus

Molnupiravir wird nach oraler Einnahme erst durch die Verstoffwechselung im Körper aktiviert. Körperzellen nehmen das Mittel auf und wandeln es in RNA-ähnliche Bausteine um. In der ersten Phase schleust die virale Kopiermaschine, RNA-Polymerase genannt, die Bausteine in das Virus-RNA-Erbgut ein. Im Gegensatz zu Remdesivir, das die virale RNA-Polymerase ausbremst, beeinträchtigt Molnupiravir die Funktion der Kopiermaschine allerdings nicht direkt.

Stattdessen verbinden sich die RNA-ähnlichen Bausteine in der zweiten Phase mit den Bausteinen des viralen Erbguts. „Wird dieses vervielfältigt, um neue Viren zu produzieren, enthält es zahlreiche Fehler, sogenannte Mutationen. Dadurch kann sich der Erreger nicht mehr vermehren“, erläutert Florian Kabinger, Doktorand in Cramers Abteilung. Gemeinsam mit den anderen Erstautoren, Carina Stiller und Jana Schmitzová, führte er die entscheidenden Experimente für die Studie durch.

Der Zwei-Phasen-Wirkmechanismus von Molnupiravir scheint auch bei anderen RNA-Viren Mutationen auszulösen und diese somit an einer weiteren Ausbreitung zu hindern. „Mit dem Wirkstoff ließe sich möglicherweise ein ganzes Spektrum von viralen Erkrankungen behandeln“, sagt Höbartner, Professorin für Chemie an der JMU. „Molnupiravir hat viel Potenzial.“ Zurzeit befindet sich der vielversprechende Wirkstoff in der letzten Entwicklungsphase (Phase III), in der er an einer großen Zahl von Patientinnen und Patienten erprobt wird. Ob Molnupiravir wirklich sicher ist und als Medikament zugelassen werden kann, wird voraussichtlich in der zweiten Jahreshälfte bekannt. Die US-Regierung ist dabei optimistisch: Sie hat sich bereits rund 1,7 Million Dosen im Wert von über einer Milliarde Dollar gesichert.

Publikation

Kabinger F, Stiller C, Schmitzová J, Dienemann C, Hillen HS, Höbartner C, & Cramer P: Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. In: Nature Structural & Molecular Biology (2021), doi: https://doi.org/10.1038/s41594-021-00651-0

Weblinks

Webseite der Gruppe Organische und biomolekulare Chemie, Julius-Maximilians-Universität Würzburg

Webseite der Abteilung Molekularbiologie von Patrick Cramer, Max-Planck-Institut für biophysikalische Chemie, Göttingen

Kontakt

Prof. Dr. Claudia Höbartner, Institut für Organische Chemie, Universität Würzburg, T. +49 931 31-89693, claudia.hoebartner@uni-wuerzburg.de

Prof. Dr. Patrick Cramer, Abteilung Molekularbiologie, Max-Planck-Institut für biophysikalische Chemie, T. +49 551 201-2800, patrick.cramer@mpibpc.mpg.de

Von MPI

Zurück